Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.

Identifieur interne : 002324 ( Main/Exploration ); précédent : 002323; suivant : 002325

Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.

Auteurs : Scott Schaeffer [États-Unis] ; Artemus Harper [États-Unis] ; Rajani Raja [États-Unis] ; Pankaj Jaiswal [États-Unis] ; Amit Dhingra [États-Unis]

Source :

RBID : pubmed:25393533

Descripteurs français

English descriptors

Abstract

Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding plastid biology, preferentially based on model systems is deficient. New plant genomes are expected to enable the identification of potentially new plastid-targeted proteins that will aid in studying novel roles of plastids.

DOI: 10.1371/journal.pone.0112870
PubMed: 25393533
PubMed Central: PMC4231079


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.</title>
<author>
<name sortKey="Schaeffer, Scott" sort="Schaeffer, Scott" uniqKey="Schaeffer S" first="Scott" last="Schaeffer">Scott Schaeffer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harper, Artemus" sort="Harper, Artemus" uniqKey="Harper A" first="Artemus" last="Harper">Artemus Harper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Raja, Rajani" sort="Raja, Rajani" uniqKey="Raja R" first="Rajani" last="Raja">Rajani Raja</name>
<affiliation wicri:level="2">
<nlm:affiliation>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<affiliation wicri:level="2">
<nlm:affiliation>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhingra, Amit" sort="Dhingra, Amit" uniqKey="Dhingra A" first="Amit" last="Dhingra">Amit Dhingra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25393533</idno>
<idno type="pmid">25393533</idno>
<idno type="doi">10.1371/journal.pone.0112870</idno>
<idno type="pmc">PMC4231079</idno>
<idno type="wicri:Area/Main/Corpus">001F26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F26</idno>
<idno type="wicri:Area/Main/Curation">001F26</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F26</idno>
<idno type="wicri:Area/Main/Exploration">001F26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.</title>
<author>
<name sortKey="Schaeffer, Scott" sort="Schaeffer, Scott" uniqKey="Schaeffer S" first="Scott" last="Schaeffer">Scott Schaeffer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harper, Artemus" sort="Harper, Artemus" uniqKey="Harper A" first="Artemus" last="Harper">Artemus Harper</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Raja, Rajani" sort="Raja, Rajani" uniqKey="Raja R" first="Rajani" last="Raja">Rajani Raja</name>
<affiliation wicri:level="2">
<nlm:affiliation>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<affiliation wicri:level="2">
<nlm:affiliation>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhingra, Amit" sort="Dhingra, Amit" uniqKey="Dhingra A" first="Amit" last="Dhingra">Amit Dhingra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Chloroplast Proteins (genetics)</term>
<term>Chloroplasts (genetics)</term>
<term>Proteome (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Chloroplastes (génétique)</term>
<term>Protéines chloroplastiques (génétique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéome (génétique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Chloroplast Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chloroplastes</term>
<term>Protéines chloroplastiques</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Similitude de séquences d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding plastid biology, preferentially based on model systems is deficient. New plant genomes are expected to enable the identification of potentially new plastid-targeted proteins that will aid in studying novel roles of plastids. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25393533</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.</ArticleTitle>
<Pagination>
<MedlinePgn>e112870</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0112870</ELocationID>
<Abstract>
<AbstractText>Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding plastid biology, preferentially based on model systems is deficient. New plant genomes are expected to enable the identification of potentially new plastid-targeted proteins that will aid in studying novel roles of plastids. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schaeffer</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harper</LastName>
<ForeName>Artemus</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raja</LastName>
<ForeName>Rajani</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jaiswal</LastName>
<ForeName>Pankaj</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>2082 Cordley Hall, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dhingra</LastName>
<ForeName>Amit</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, Washington State University, Pullman, WA, United States of America; Molecular Plant Science Graduate Program, Washington State University, Pullman, WA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM008336</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D060365">Chloroplast Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060365" MajorTopicYN="N">Chloroplast Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25393533</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0112870</ArticleId>
<ArticleId IdType="pii">PONE-D-14-36194</ArticleId>
<ArticleId IdType="pmc">PMC4231079</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2013 Feb;64(4):949-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23314817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Aug 15;22(16):2020-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Sep;118(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 1995;163:175-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8522420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Feb;18(2):298-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D800-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9897-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15178762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jan;7(1):14-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11804822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 1999 Fall-Winter;6(3-4):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10582567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18279528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008 Jul;179(2):257-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19086173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 15;104(20):8538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1989;177:198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11539759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21224340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr J. 2004 May 12;3:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1989 Apr 1;180(3):535-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2653818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Jan 4;170(3):613-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3338457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2004 Mar 31;329:11-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15033524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theory Biosci. 2005 Aug;124(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jun;4(6):1581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15174128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15235120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1085-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21076153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1984 Jun 15;141(3):531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6086332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1578-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21350036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Jul;87(3):727-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(8):e12253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18940856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Aug;7(8):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Mar 9;14(5):354-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15028209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 6;277(49):47770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 May;61(9):2413-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(4):e1994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18431481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 17;286(24):21427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Apr;63(3):651-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22031452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 31;485(7400):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2011;2011:bar030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2006;411:134-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16939790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Jan;5(1):114-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2013 May;45(5):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Oct;42(10):833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Sep;13(9):483-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Aug 15;29(16):E82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12218172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Schaeffer, Scott" sort="Schaeffer, Scott" uniqKey="Schaeffer S" first="Scott" last="Schaeffer">Scott Schaeffer</name>
</region>
<name sortKey="Dhingra, Amit" sort="Dhingra, Amit" uniqKey="Dhingra A" first="Amit" last="Dhingra">Amit Dhingra</name>
<name sortKey="Harper, Artemus" sort="Harper, Artemus" uniqKey="Harper A" first="Artemus" last="Harper">Artemus Harper</name>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<name sortKey="Raja, Rajani" sort="Raja, Rajani" uniqKey="Raja R" first="Rajani" last="Raja">Rajani Raja</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002324 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002324 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25393533
   |texte=   Comparative analysis of predicted plastid-targeted proteomes of sequenced higher plant genomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25393533" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020